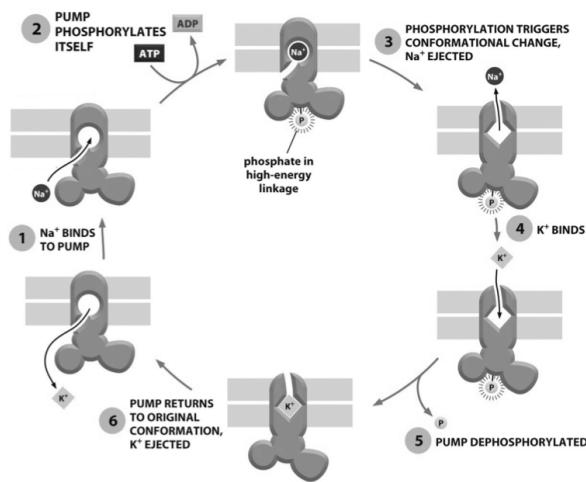

QUESTIONS

1 You have prepared lipid vesicles that contain K^+ leak channels, all oriented so that their cytoplasmic surface faces the outside of the vesicles. There is no membrane potential initially. How will K^+ ions move and what sort of membrane potential will develop if:

- A) There are equal $[K^+]$ outside and inside the vesicles,
- B) K^+ is only present inside,
- C) K^+ is only present outside.

2 Here is the recording of a patch-clamp experiment, in which the patch was from the plasma membrane of a muscle cell. It contains molecules of the acetylcholine receptor (a ligand-gated cation channel). Acetylcholine was added to the solution in the microelectrode.

- A) Your friend says that, if a ligand is added, this will cause the opening of the channel, which will remain open until the ligand is removed. What do you respond?
- B) Describe what the rectangular peaks are.
- C) What would happen if acetylcholine were added on the other side, i.e. outside the electrode?
- D) What happened here (arrow)?



3 Aquaporins are special channels that transport large amounts of water. Ions cannot pass through these channels, which prevents ion gradients to be completely disrupted. Explain why Na^+ and H^+ cannot go through.

4 You prepared lipid vesicles that contain exclusively, as membrane proteins, copies of the Na^+/K^+ pump, where we assume 1 Na^+ and 1 K^+ are transported each cycle, as shown in Figure below. All pumps are oriented so that the cytoplasmic portion faces the outside of the vesicles. Predict what would happen if:

- A. The solution inside and outside the vesicles contains both Na^+ and K^+ , but no ATP.
- B. The solution inside contains both Na^+ and K^+ ; the solution outside contains Na^+ , K^+ and ATP.

C. The solution inside contains Na^+ ; the solution outside contains Na^+ and ATP.
 D. The solution is as in B), but the pump molecules are randomly oriented.

5 Acetylcholine-gated cation channels do not discriminate between Na^+ , K^+ or Ca^{++} . When these acetylcholine receptors in muscle cells open, why is it then mostly Na^+ that enters the cells?

6 Indicate whether each of the following descriptions matches an ABC transporter (A), a P-type pump (P), or a V-type pump (V). Your answer would be a four-letter string composed of letters A, P, and V only, e.g. PPAV.

() The pumps in this family are phosphorylated at a key Asp residue in each transport cycle.
 () The pumps in this family are responsible for the acidification of synaptic vesicles.
 () The sodium-potassium pump is a member of this family.
 () The multidrug resistance protein is a member of this family.

7. Match each definition below with its term from the list.

- 1 An aqueous pore in a lipid membrane, with walls made of protein, through which selected ions or molecules can pass.
- 2 the movement of a small molecule or ion across a membrane due to a difference in concentration or electrical charge.
- 3 General term for a membrane-embedded protein that serves as a carrier of ions or small molecules from one side of the membrane to the other.
- 4 Movement of a molecule across a membrane that is driven by ATP hydrolysis or other form of metabolic energy.
- 5 Driving force for ion movement that is due to differences in ion concentration and electrical charge on either side of the membrane.

- A. active transport
- B. channel
- C. electrochemical gradient
- D. membrane transport protein
- E. passive transport
- F. transporter

8: Order the molecules on the following list according to their ability to diffuse through a lipid bilayer, beginning with the one that crosses the bilayer most readily. Explain your order.

1. Ca^{2+}
2. CO_2
3. Ethanol
4. Glucose
5. RNA
6. H_2O

9: TRUE/FALSE

Decide whether each of these statements is true or false, and then explain why.

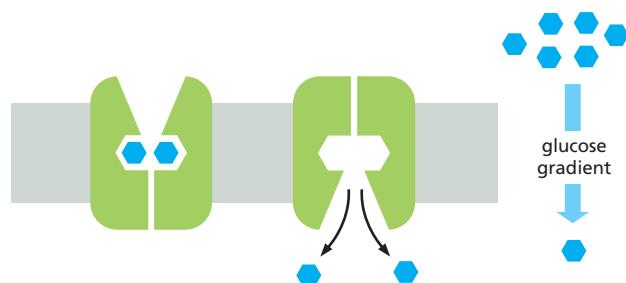
A: The plasma membrane is highly impermeable to all charged molecules.

B: Transport by transporters can be either active or passive, whereas transport by channels is always passive.

C: A symporter would function as an antiporter if its orientation in the membrane were reversed; that is, if the portion of the protein normally exposed to the cytosol faced the outside of the cell instead.

D: The co-transport of Na^+ and a solute into a cell, which harnesses the energy in the Na^+ gradient, is an example of primary active transport.

E: Transporters saturate at high concentrations of the transported molecule when all their binding sites are occupied; channels, on the other hand, do not bind the ions they transport and thus the flux of ions through a channel does not saturate.


F: The membrane potential arises from movements of charge that leave ion concentrations practically unaffected, causing only a very slight discrepancy in the number of positive and negative ions on the two sides of the membrane.

G: The aggregate current crossing the membrane of an entire cell indicates the degree to which individual channels are open.

H: Transmitter-gated ion channels open in response to specific neurotransmitters in their environment but are insensitive to the membrane potential; therefore, they cannot by themselves (in the absence of ligand) generate an action potential.

10: How is it possible for some molecules to be at equilibrium across a biological membrane and yet not be at the same concentration on both sides?

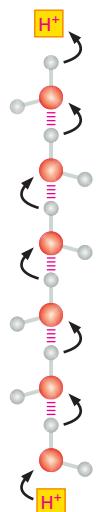

11: a model for a uniporter that could mediate passive transport of glucose down its concentration gradient is shown the figure below. How would you need to change the diagram to convert the transporter into a pump that transports glucose up its concentration gradient by hydrolyzing ATP? Explain the need for each of the steps in your new illustration.

Figure 11–2 Hypothetical model showing how a conformational change in a transporter could mediate passive transport of glucose (Problem 11–27). The transition between the two conformational states is proposed to occur randomly and to be completely reversible, regardless of binding-site occupancy.

12: What two properties distinguish an ion channel from a simple aqueous pore?

13: Aquaporins allow water to move across a membrane, but prevent the passage of ions. How does the structure of the pore through which the water molecules move prevent passage of ions such as K^+ , Na^+ , Ca^{2+} , and Cl^- ? H^+ ions present a different problem because they move by relay along a chain of hydrogen-bonded water molecules (Figure 11–9). How does the pore prevent the relay of H^+ ions across the membrane?

Figure 11–9 Rapid diffusion of H^+ ions by a molecular relay system involving the making and breaking of hydrogen bonds between adjacent water molecules

14: Acetylcholine-gated cation channels do not discriminate among Na^+ , K^+ , and Ca^{2+} ions, allowing all to pass through freely. How is it, then, that when acetylcholine receptors in muscle cells open there is a large net influx principally of Na^+ ?